
Chapter 1: Limits and Their Properties

Section 1.1: A Preview of Calculus

Calculus (often referred to as the calculus) is a branch of mathematics that deals with 
continuously varying quantities.  Its invention is traditionally ascribed to two 17 th century 
mathematicians: Gottfried Wilhelm Leibniz and Isaac Newton.  However, many of the key 
concepts of the calculus had been explored well before their times.  For instance, the idea of 
the integral had been studied by Archimedes in the third century BCE.  Newton and Leibniz 
have the distinction, however, of being the first to synthesize the two major halves of calculus: 
the differential calculus and the integral calculus.  

Differential calculus is related to the problem of finding the slope of an curve at a particular 
point, while the idea of integral calculus came from efforts to calculate the area under curves. 
Newton and Leibniz showed that these apparently unrelated ideas are in fact intimately 
related by a statement known as the fundamental theorem of calculus.  (This very important 
concept is introduced in section 4.4.)  Pages 43 and 44 show several concepts which can be 
analyzed using calculus, but for which algebraic techniques are insufficient.

Section 1.2: Finding Limits Graphically and Numerically

Limits

If a function f(x) approaches a particular value L when x gets arbitrarily close to a particular 
number c, the function is said to have a limit at c equal to L.  Mathematically, this statement is 
written

lim
xc

f x  = L

For example, consider the function  f(x) = 2x, calculating limits is straightforward.  One can 
see that as x gets close arbitrarily to 3, the function f(x) = 2x gets arbitrarily close to 6.  In 

other words, lim
x3

2x = 6 . 

It is not necessary for the function to exist at the point where the limit is evaluated.  For 

example, the function f x =
x3 − 1
x − 1

does not exist at the point x = 1, because f(1) results in 

a division by zero.  However, the limit of f(x) at as x approaches 1 does exist and is equal to 3. 
We can see this by plugging in values of x that are successively closer to 1:

x 0.75 0.9 0.99 0.999

f(x) 2.313 2.710 2.970 2.997

x 1.25 1.1 1.01 1.001

f(x) 3.813 3.310 3.030 3.003



Nonexistant limits

The function f x =
∣x∣
x

does not have a limit at x = 

0, because the function does not approach a 
particular value.  Instead, as x approaches 0 from 
the right, f(x) approaches 1, while as x approaches 0 
from the left, f(x) approaches -1 (see Figure 1).  

Another limit that does not exist is lim
x0

1

x2 .  In this 

case, the function does not approach any particular 
value, but instead becomes arbitrarily large near 
small values of x.

Formal definition of limits

To be more precise, suppose that c varies by a 
small amount δ and the corresponding L value 
varies by a corresponding amount ε as shown in 
Figure 2.  If the limit exists, you must be able to 
make ε as small as you want simply by 
decreasing the size of δ. 

lim
x0

∣x∣
x

does not exist, because no matter how 

close x gets to 0, the difference between the 
corresponding y-values is always equal to 1.

Section 1.3: Evaluating Limits Analytically

For “normal” functions like f(x) = 2x, calculating limits is straightforward.  All one needs to do 
is plug the appropriate value of x into the function.  For example, one can show that 
lim
x3

2x = 6 , just by plugging x = 3 into the function f(x) = 2x.  

However, there are other limits for which one cannot simply plug the x value into the function, 
because the function does not exist at that particular x-value, or because the value of the 
function at that point and the value it is approaching are different.  Not surprisingly, it is these 
special cases that we are most interested in.

Often there is some algebraic “trick” one can use to evaluate limits.  

For example, the limit lim
x1

x3
− 1

x − 1
may be evaluated by factoring the numerator and 

canceling out the denominator.  Once the problematic x – 1 term has been canceled out, it is 
possible to plug in x = 1 into the remainder.

Figure 2: Formal definition of limits
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Figure 1: The function f x =
∣x∣
x

does 

not have a limit as x approaches 1.
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lim
x1

x3
− 1

x − 1
= lim

x1

x − 1x2  x  1

x − 1
= lim

x1
x2

 x  1 = 3

Another useful trick is “multiplying by the conjugate.”  For example,

lim
x3

 x  1 − 2
x − 3

= lim
x 3

 x1 − 2
x − 3

⋅
 x  1  2
 x  1  2

= lim
x 3

x − 3
x − 3x  1  2

= lim
x 3

1
 x  1  2

=
1
4

Squeeze theorem

The squeeze theorem states that if one 
function always lies between two functions 
over an open interval containing c, and that 
the limit both of the outside functions at c is L, 
then the limit of the middle function must also 
be L (see Figure 3).

The squeeze theorem can be used to prove 
two trigonometric limits of particular 
importance:

lim
x0

sin x
x

= 1 and lim
x0

1 − cos x
x

= 0

Figure 3: h(x) lies between f(x) and g(x).  Because 
the limits of f(x) and g(x) as x approaches c are L,  
the limit of h(x) as x approaches c must also be L.


